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Building a Quantum Spacetime
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A quantum spacetime is constructed from the free data given at past null infinity.
One starts with a field equation for a scalar function Z on the initial surface and
then shows that the solution depends on four constants of integration. These
constants become the spacetime points and the level surfaces of the scalar function,
i.e., Z 5 const, become null hypersurfaces on the derived spacetime. A phase
space together with a complex structure are constructed on past null infinity. This
Hilbert space of incoming gravitons possesses a natural foliation which defines
superselection sectors on the space of asymptotic quantum states. The dynamics
of null surface quantization provides spacetime-valued quantum operators on the
superselection sectors. It is shown that the spacetime points themselves become
operators with nonvanishing commutation relations.

1. INTRODUCTION

There are several programs attempting to quantize the gravitational field

(so far with different degrees of success) [1±4].2 The canonical quantization

program seems to have been successful in constructing a quantum theory of
general relativity in a mathematically consistent fashion [6]. The next step

in this approach is to give a reasonable physical interpretation. In particular,

this program would like to know what possible physical meaning could be

given to a ª quantum spacetime.º

From this perspective, superstring theory is lagging behind since it still

is a perturbative theory which needs a background flat metric as the kinemati-
cal arena for the quantum operators. However, neither approach is able to

provide a mathematical model for a quantum spacetime since both need a

differentiable manifold to define quantum fields or strings.
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Recently, by applying a quantization procedure to the null surface formu-

lation (NSF) of general relativity [7], we obtained some rather surprising

results. We observed that the spacetime points themselves must be ª quan-
tized,º i.e., turned into operators with commutation relations, etc. A straight-

forward consequence of this result is that the manifold idea itself must be

changed. This is not simply an empty conjecture; there is in principle (in full

theory) and in practice (in linear theory) a means to calculate the commutators

between individual spacetime points [9]. The only piece of kinematical or

background arena left in the NSF construction is the past null boundary of
spacetime, denoted by ( 2 . This initial surface serves as the natural lab where

incoming gravitons are produced. Everything else is constructed from the

solutions to the NSF field equation.

The outline of this review is as follows. In Section 2 we introduce the

main variable of the NSF and give a brief summary of the geometrical

constructions needed for this work. In Section 3 we present the field equations,
and in Section 4 we outline the construction of the spacetime as well as a

canonical coordinate system that allows us to identify points in a natural

way. In Section 5 we discuss what happens when we try to turn the new

point of view into a quantum theory, and in Section 6 we provide a phase

space for these quantum operators. In Section 7 we discuss possible meanings
and ramifications of these ideas.

2. SCRI, THE FREE DATA, AND LIGHT CONE CUTS

Consider an asymptotically flat spacetime M with (past) null boundary

Scri (( 2 5 S2 3 R ). Let ( z , z ) be a complex stereographic coordinate on S2

which labels the generators of ( 2 , and let u P R be an appropriately normal-

ized parameter along the generators. Thus (u, z , z ) are the Bondi coordinates

on ( 2 . The free data for Einstein’ s equations are then associated with a

connection (the Bondi shear) on ( 2 , and can be specified by the choice of

a complex spin-weight-2 field s (u, z , z ) on ( 2 . The space of all such fields

( s ), together with the appropriate symplectic structure, constitutes the reduced
phase space of general relativity [10].

Consider now the past light cone from a point xa in M. The intersection of

this light cone with ( 2 is called a light cone cut. It can be locally described as

u 5 Z(xa, z , z ) (1)

This function Z, which depends on six variables, contains all the information
of the conformal structure, i.e., its knowledge is completely equivalent to

knowledge of the metric up to rescaling [11]. It is clear that Z is a nonlocal

variable since it is determined from the Riemann curvature along the path

of each null geodesic. It is rather remarkable that for pure gravity, i.e., for
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Ricci flat metrics, a field equation for Z equivalent to the Einstein vacuum

equations can be derived. Details of the field equation are discussed in the

next section.
Assuming a solution Z is given, we can introduce the following scalars:

u 5 Z(xa, z , z ), v 5 -±Z, v 5 -±Z, R 5 -±-±Z, (2)

where the -±(eth) and -±(eth-bar) operators are essentially partial derivatives

with respect to z and z , respectively. For each ( z , z ) P S2 the scalars (2)

define a coordinate system. An alternative notation found in the literature is

(u, v , v , R) 5 ( u 0, u +, u 2 , u 1) 5 u i

with its gradient and dual vector bases denoted by u i
,a, and u a

i , respectively.

This coordinate system is very useful in defining the notion of quantum

spacetime points.

3. THE FIELD EQUATIONS FOR Z

We review here the null surface formulation of classical general relativity

for asymptotically flat spacetimes [8]. By construction, the solutions to the

NSF field equations automatically produce null hypersurfaces of a regular,
radiative spacetime. Instead of having field equations on a 4-dimensional

manifold for the metric of the spacetime, we give equations at ( 2 for a scalar

field Z. The level surfaces of this function then define the null hypersurfaces

of the spacetime.

From the surfaces themselves, by differentiation, a (conformal) metric

can be obtained (the surfaces themselves are then automatically characteristic
surfaces of this conformal metric). The equations simultaneously determine

a choice of conformal factor such that the metric automatically satisfies the

vacuum Einstein equations. In other words, the vacuum Einstein equations

are formulated as equations for families of surfaces and a single scalar

conformal factor. In our present discussion we will be primarily interested

in only the characteristic surfaces. Our point of view will be that we are
given the equation for the surfaces and we are interested now in information

that we can retrieve from knowledge of the solutions to the field equations.

As mentioned in the previous section, the cut function Z(xa, z ), z )

represents the intersection of the past light cone from xa with ( 2 . Its specific

form depends on the effect of the curvature of the spacetime on the past

cone. In particular, if the underlying spacetime represents the self-interaction
of incoming gravitational radiation from ( 2 , then the curvature tensor is

completely determined by the data given at ( 2 . These data are given by a

complex-valued spin-weight-2 function s (u, z , z ) which can be given freely.

The data restricted to the lightcone cut Z become s (Z, z , z ). A main feature
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of the NSF is that these free data are used as a source term in the field

equation for Z [7, 12]. Since this equation is very complicated, we present

here an equation which is equivalent to the Einstein equations at the linearized
level. By doing so, we simplify the treatment of the quantization procedure

without losing our point of view toward the subject. We start with the follow-

ing equation at ( 2 :

-±2 -±2Z 5 -±2 s (Z, z , z 1 -±2 s (Z, z , z ) (3)

Since we are looking for regular solutions to this equation, we can rewrite

it in integral form as

Z(xa, z , z , [ s ]) 5 x ala( z , z ) 1 # S
2

d 2 h [G( z , z , h , h ) s (Z, h , h ) 1 c.c.] (4)

where G( z , z ; h , h ) is a known Green’ s function [13], the brackets represent

functional dependence on the free data, la represents the l 5 0, 1 spherical

harmonics, which are annihilated by the -±2 -±2 operator, and x a are four con-

stants of integration. Note that although the field equation is given at ( 2 ,

the spacetime points enter as parameters in the solution.
The linearized solution to (5) is given by

Z(xa, z , z , [ s ]) 5 xala( z , z ) 1 # S2
d 2 h [G( z , z ; h , h ) s (x ala( h , h ), h h ) 1 c.c.]

(5)

4. BUILDING A SPACETIME

We now assume to have a solution Z(xa, z , z , [ s ]) and derive several

geometrical structures on the solution space x a. We emphasize again that
spacetime points xa arise as a consequence of the dynamics, i.e., Eq. (5).

The only kinematical construction is the null boundary ( 2 .

c The characteristic surfaces of the spacetime are described as follows:

For fixed values of (u, z , z ), the equation

Z(xa, z , z ; [ s ]) 5 u (6)

describes a characteristic (or null) surface in terms of the given local chart

xa on our manifold. In fact, the null surface is the future lightcone of the
point (u, z , z ) on ( 2 . As the value of u varies [for fixed ( z , z )] we have a

one-parameter foliation (of a local region) by the characteristic surfaces. The

( z , z ) then label a sphere’ s worth of these null foliations; equivalently, for

each point x a, as the ( z , z ) vary, we obtain a sphere’ s worth of characteristic

surfaces through x a. An alternate interpretation of the function u 5 Z(x a, z ,
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z ; [ s ]) is that, for fixed point xa, it describes the lightcone cut of xa; i.e., the

intersection of the future lightcone of x a with ( 2 .

Assuming that the Z satisfies our differential equations, one can then,
in a prescribed fashion, express a conformal Einstein metric in terms of

derivatives of Z [7]. In what follows, we assume that the function Z is always

implicitly associated with an appropriate conformal factor that guarantees an

Einstein metric. Notice, first, that all the conformal information about the

spacetime is contained in the knowledge of Z(x a, z , z ; [ s ]) and, second, that

the (Einstein) conformal factor itself depends on the data. (For the sake of
simplicity of presentation, we have slightly simplified the discussion. See

ref. 7 for the details.)

c It follows from the above considerations that, for each fixed value of

( z , z ), as u varies, the Z describes a foliation by null surfaces. Then the

coordinate system given in Section 2 is a null or characteristic coordinate

system which functionally depends on the free data. To emphasize this fact
we write

u 5 Z(xa, z , z , [ s ]) (7)

v 5 -±Z(x a, z , z , [ s ]) (8)

v 5 -±Z(x a, z , z , [ s ]) (9)

R 5 - - Z(xa, z , z , [ s ]) (10)

The geometrical meaning of the coordinates (u, v , v , R) is discussed below.

Note that we automatically have a sphere’ s worth of these characteristic

coordinate systems (a single coordinate system for every value of z , z ).
With the notation

u i 5 ( u 0, u +, u 2 , u 1) 5 (u, v , v , R) (11)

we have that

u i 5 u i(xa, z , z ; [ s ]) (12)

is a coordinate transformation from the ª oldº coordinates xa to a sphere’ s

worth of null coordinate systems u i. It should be stressed that the u i contain
the full information about the solutions of the conformal Einstein equations,

through their dependence on the data s .

c Equation (12) can be algebraically inverted to express the local coordi-

nates x a in terms of the u i and z , z :

x a 5 x a( u i, z , z , [ s ]) [ x a(u, v , R, z , z ; [ s ]) (13)

The inversion shows that, in the chart u i, the xa depend on the data.

Note that, like (12), (13) also contains the full information about the solutions
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of the conformal Einstein equations; i.e., from (13) a metric conformal to an

Einstein metric can be obtained. Though this feature is basic, (13) encodes

other information which is, at the moment, of more direct interest to us.
c We thus have two related and complementary interpretations (assume

we fix the data s B) for Z:

1. Lightcone cuts: For a fixed spacetime point xa, u 5 Z(xa, z , z )

yields its lightcone cut on Scri, w yields the angle of intersection

of the cut with the generators ( z , z ) of Scri, and r is the curvature

of the cut.

2. Spacetime points: Given a fixed observation point (u, z , z ) at Scri,
xa( u i, z , z ) gives the coordinate which lies at a parameter distance

r along the generator (w, w) of the past lightcone of point (u, z , z ).

c A Ricci flat metric can be constructed explicitly from knowledge of

Z. However, our basic variable naturally yields null surfaces rather than fields

on a manifold and we are dealing with a surface theory rather than a field

theory. What are the quantum analogs of these structures?

5. A QUANTIZATION PROCEDURE

Adopting Ashtekar ’ s asymptotic quantization procedure [10], we can

promote the Bondi free data s B at ( 2 to a quantum operator s Ã(u, z , z ) that
obeys the following commutation relations:

[ s Ã(u, z , z ), s Ã(u8, z 8, z 8)] 5 i D (u 2 u8) d 2( z 2 z 8)1Ã (14)

where the step function D (u 2 u8) reflects the fact that u and u8 are null

separated. Note that Z also becomes an operator

ZÃ(x a, z , z ) [ Z(xa, z , z , [ s Ã]) 5 x alaIÃ1 # S
2

d 2 h [G( z , z ; h , h ) s Ã1 c.c.]

(15)

and then from (14) one can obtain commutation relations for the ZÃ; i.e.,

[ZÃ(x a, z , z ), ZÃ(x8a, z , z 8)] 5 D f (x
a, x8a, z , z 8) (16)

where D f is a generalized Feynman propagator [7].
Using the relationship between Z and the metric gab, we can construct

quantum fields gÃab, or CÃabcd, on the spacetime, yielding the standard commuta-

tion relations. However, as we will see, we can also derive other consequences

that cannot be duplicated using any quantum field theory approach.
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There is, however, a potential problem, namely, the meaning of quantum

surfaces and quantum spacetime points. Below we provide a tentative interpre-

tation of these operators.

5.1. Fuzzy Lightcone Cuts

Following a quantum mechanical interpretation of the trajectory of a

particle yi(t), we regard ZÃ(xa, z , z ;) as a six-parameter family of operators

with (xa, z , z ;) classical parameters.

The eigenvalues of ZÃyield the space of possible values u. Since a generic
state of quantum gravity will not be an eigenstate of ZÃ, we can only associate

a probabilistic interpretation for the lightcone cut of a given point. Likewise,

the angle of the cut with the generators of Scri and its curvature are fuzzy.

This analogy, however, cannot be pushed too much since we are not

quantizing particle motion, but geometric properties of spacetimes. For exam-

ple, if we are given a physical state c of ª quantum gravityº and if | u; (x a,
z , z ) & is an eigenstate of ZÃwith eigenvalue u, then we do not expect that | ^ u;

(xa, z , z ) | c & | 2 is a probability distribution since it should have similar problems

as the relativistic Klein±Gordon field. Rather, we expect that this amplitude

will give us the number of gravitons that are peaked around a plane wavefront

characterized by the eigenvalue u.
In this preliminary interpretation, it is the points, i.e., values of u, along

the generators of ( 2 which are ª fuzzy.º Thus the lightcone cut of the point

xa appears to be fuzzy.

5.2. Fuzzy Spacetime Points

In the dual formulation the spacetime points become operators. Using

the inversion equation, we define the operators

xÃa 5 xa( u i; z , z ; [ s Ã]) (17)

keeping the observation points ( u i; z , z ) as c-numbers. (These six parameters

define the classical observers at Scri.) A very relevant question: What is the

analog of a point in the quantum theory?

A candidate could be a common eigenstate | x a; (u, v , R), z , z ) & of the
four operators xÃa; this would correspond to well-defined values of all four

coordinates, and thus a well-defined ª spacetime point.º Let us fix a specific

null-coordinate system, by fixing z , z corresponding to an asymptotic observer.

It can be shown that for the same values of ( u i; z , z ),

[xÃa, xÃb] 5 0
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Thus, it is possible to define a spacetime point eigenstate. However, we

do not expect a generic wave function in quantum gravity to be an eigenstate

of xa. Moreover,

[xÃa( u i; z , z ), xÃb( u j; h , h )] Þ 0

This means one cannot define common eigenstates for the entire space-

time, the points of the manifold are fuzzed out, and the only structure free

of quantum fluctuations is Scri.

6. THE SPACE OF INCOMING GRAVITONS

A very important issue was left aside in the previous section. The

quantum operators there defined obeyed ª formalº commutation relations. We

still have the task to construct the associated Hilbert and Fock spaces where

those operators should act. Following the rules of geometrical quantization,

the Hilbert space will be a properly defined phase space together with a

Hermitian inner product
A sketch of this construction follows [14]:

c We start with the solution space S 5 { s B} at Scri.

c S admits a natural foliation where each leaf is labeled by the value

of the mass aspect c 2 at io.
c On each leaf we introduce a symplectic form V ,

V ( d s 1, d s 2) 5 # (

d 3I [ d s 1 d s Ç 2 2 d s Ç 1 d s 2] 1 c.c. (18)

where d s 1, d s 2 are tangent vectors on T( S ).

c A complex structure

J d s 5 i( d s pos 2 d s neg) (19)

is then introduced on the phase space. (Note that this operator satisfies J 2 5
2 1.) Furthermore, we can also introduce a Hermitian inner product,

g( d s 1, d s 2) 5 V ( s 1, Js2) 1 i V (s1, s2) (20)

c To construct the Hilbert space we need a prescription to select the

configuration space, i.e., the space of q’ s or p’ s. Since each leaf is not a

cotangent bundle nor a vector space, we cannot apply the standard quantization

procedure to construct the Hilbert space. Fortunately, there is available a
method called geometric quantization which can be applied to each leaf since

J induces a Kahler polarization.

c It is worth mentioning that there is no relation between Hilbert spaces

of different leaves. This suggests the possibility of superselection sectors in
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a quantum theory of gravity. (A similar result was obtained when quantizing

a spherically symmetric spacetime [15].)

7. SUMMARY AND DISCUSSION

We briefly summarize the steps taken.

c We start with the solution space for radiative spacetimes S 5 { s B}

and construct a physical phase space ( S , V , J ).
c Via the NSF field equations, the Einstein equations are encoded in

Z, a functional on s B. Z determines a conformal metric and a coordinate

system u i.

c The u i can be inverted to yield the local coordinates xa of the spacetime

points (they become six-parameter functionals on the phase space).

c Following Ashtekar ’ s quantization procedure, we then promote the
free data to quantum operators. This is then used to construct the quantum

u Ãi and xÃa.
c We derive an immediate consequence: A physical state of quantum

gravity cannot be an eigenstate of xÃa, the spacetime manifold is not a well-

defined entity in quantum gravity.
c We also show that a Hilbert space of incoming gravitons can be

constructed on each leaf, but not on the entire S . This defines superselection

sectors in quantum gravity.

We close with some comments.

c We face a conceptual problem in the full theory: how to construct the

operators u Ãi and xÃa in the full theory. There are several technical problems
that must be solved before a consistent theory can be formulated. Among

them we can mention the ordering problem, the appearance of infinities in

a perturbation procedure, or, alternatively, a formulation of a nonperturba-

tive theory.

c In principle our phase space should be equivalent to the reduced phase

space of canonical gravity. We have been unable to show this correspondence.
c In our formulation the quantities xa(u, v , v , r, z , z , [ s ]), considered

as families of functions on the reduced phase space, are examples of evolving

constants of motion. It has been argued that these constants describe evolution

in a diffeomorphism-invariant way [16]. Thus, they must be promoted to

quantum operators. However, no such quantity was known in general relativ-

ity. Here we give an explicit example and construct their quantum analog xÃa.
c We emphasize that ours is not a field theory on a background manifold,

rather a theory of surfaces. Our only background structure is Scri equipped

with free functions s . In this sense our picture is a radical departure from

quantum field theory: quantum spacetime is ill defined.



1112 Kozameh

REFERENCES

[1] C. Isham, Prima facie questions in quantum gravity, in [2].

[2] J. Ehlers and H. Friedrich, eds., Canonical Gravity: From Classical to Quantum , Springer-

Verlag, Berlin (1994).

[3] R. Penrose, Shadow of the Mind, Oxford University Press, Oxford (1994); R. Sorkin, In

Relativity and Gravitation: Classical and Quantum , World Scientific, River Edge, New

Jersey (1991).

[4] A. Ashtekhar and J. Stachel, eds., Conceptual Problems of Quantum Gravity, BirkhaÈ user,

Boston (1991).

[5] D. Amati, M. Ciafaloni, and G. Veneziano, Mod. Phys. Lett. A 6, 1487 (1991); J. Hartle,

Spacetime quantum mechanics and the quantum mechanics of spacetime, in Proceedings

of the 1992 Les Houches School (1993); G. W. Gibbons and S. W. Hawking, Euclidean

Quantum Gravity, World Scientific, Singapore (1993); A. Ashtekar, Les Houches lecture

notes; C. Rovelli and L. Smolin, Nucl. Phys. B 442 , 593 (1995); R. Loll, Phys. Rev.

Lett. 75, 3048 (1995); and Special Issue on Quantum Geometry, J. Math. Phys. 36

(November) (1995).

[6] A. Ashtekar, Lectures on Non-perturbative Canonical Gravity, World Scientific, Singa-

pore (1991).

[7] S. Frittelli, C. N. Kozameh, and E. T. Newman, J. Math. Phys. 36, 4984, 5005, 6397 (1995).

[8] S. Frittelli, C. N. Kozameh, and E. T. Newman, Dynamics of light cone cuts of null

infinity, Phys. Rev. D 56, 4729 (1997).

[9] S. Frittelli, C. N. Kozameh, E. T. Newman, C. Rovelli, and R. S. Tate, On the quantization

of the null-surface formulation of GR, Phys. Rev. D 56, 889 (1997).

[10] A. Ashtekar, Asymptotic Quantization , Bibliopolis, Naples (1987).

[11] C. N. Kozameh and E. T. Newman. Theory of light cone cuts of null infinity, J. Math.

Phys. 24, 2481 (1983).

[12] L. J. Mason, J. Math. Phys. 36, 3704 (1995).

[13] J. Ivancovich, C. N. Kozameh, and E. T. Newman, J. Math. Phys. 30, 45 (1989).

[14] E. Dominguez, C. Kozameh, and M. Luvdigsen, The phase space of radiative spacetimes,

Class. Quant. Grav. 14, 3377 (1997).

[15] D. Marolf, Mass superselection, canonical gauge transformation, and asymptotically flat

variational principles, Class. Quant. Grav. 13, 1871 (1996).

[16] C. Rovelli, Phys. Rev. D 42, 2638 (1991).


